
Positron-Electron Annihilation via the Two-Photon Pathway

by

Isabelle Gauthier

(Under the direction of M. Hawton)

Abstract

When a positron/electron pair annihilate via the two-photon pathway, the
emitted photons are momentum correlated. This correlation ensures that they
move along a straight line path in opposite directions. An experiment performed in
2004 by Dr. V.D. Irby measured the time interval between detection of the photons.
He observed a decay in the number of counts with increasing detection time interval,
which he described using a Lorentzian, the line width of which at full-width half-
maximum is measured to be 120ps. The data collected by Irby is interesting because
current theory predicts that because the source is so localized (the e¤ective source
width used by Irby is safely within 5mm) the photons should be detected within a
time interval of �t = d=c where d is the thickness of the source. This time interval
corresponds to 17ps. This thesis �ts the results to an exponential, and shows that
this exponentially decaying nature of the coincidence time interval is characteristic
of the entanglement of the two photons. We �nd that the wavefunctions of the
photons decoheres in space according to how long the particle pair took to decay
(which is exponential), and that the probability of simultaneous detection depends
on the exponential of the product of the lifetime of positronium and the detection
time interval.
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Chapter 1

Introduction

Quantum mechanics was �rst discovered as a solution to the problems of blackbody

radiation, the photo-electric e¤ect and other phenomena such as how atoms emit

radiation only at discrete energies. It provides a good explanation of atomic and

photonic phenomenon in vacuum and within the framework of interaction forces.

This description of reality does come with conceptual di¢ culties, however. Arising

out of the quantum mechanical description of the world are the ideas of action-at-

a-distance, non-locality and entanglement, all of which seem to operate in counter-

intuitive and mysterious ways. Many great scientists (and lots of mediocre ones, too)

have had great di¢ culties in accepting that quantum mechanics may be complete in

its description of reality and that it is reality that is confusing.

In their oft-cited paper "Can Quantum-Mechanical Description of Physical

Reality Be Considered Complete?" [1] Einstein, Podolsky and Rosen contemplate

the idea of non-commutating operations performed on an entangled system. They

look at a system described by a two part wavefunction 	(x1; x2) =
P
n

 n (x1)un (x2)

where  n (x1) describes one component (which could be photons or electrons etc.)

and un (x2) is the set of eigenfunctions of Q (the position operator) and describes

the second component. Measuring the position of one of the particles completely

determines the wavefunction of the second particle. Measuring the complementary

property momentum also completely determines the wavefunction of the second

particle, only in this case the determined wavefunction is now an eigenfuntion of

1
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the momentum operator P . Since P and Q are non-commuting operators, position

and momentum cannot both be described completely at the same time. Thus Ein-

stein, Podolsky and Rosen conclude that this description of reality must be faulty

since the second system has not been interacted with. In their words

"This makes the reality of P and Q depend upon the process of measure-

ment carried out on the �rst system which does not disturb the second

system in any way. No reasonable de�nition of reality could be expected

to permit this."

As it happens, the EPR paradox or the idea that interacting with one particle may

alter the state of another distant particle instantaneously is now a familiar concept

in quantum mechanics re�ective of a property called "entanglement". When two or

more things (like photons) are created from the same process (such as an annihilation

event) and must conserve some property between them (such as momentum) the

two objects may be entangled. A familiar example of entanglement are the Bell

thought experiments [2]. In these experiments, two electrons which must conserve

angular momentum between them are sent in di¤erent directions and the di¤erent

spatial components of spin are measured as in the Stern-Gerlach experiments. The

measurement of these spatial components corresponds to non-commuting operators,

just as in the EPR example.

Because angular momentum is conserved, once we measure the x-component

of spin of one of the particles using a Stern-Gerlach magnet, we can infer the x-

component of spin of the other particle. If we believed the EPR argument it would

be reasonable to assume that we could measure the x-component of spin of one

of the particles and the z-component of spin of the other particle and infer the

corresponding spin components for each particle. Then we would have shown that
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the spacial components of spin can in fact be measured simultaneously and that

quantum mechanics is not a valid theory.

However, application of Bell�s theorem and non-locality to this EPR thought

experiment shows that measuring a component of spin of one of the particles changes

the wavefunction of the other instantaneously, and that subsequent measurement of

the second particle�s spin is re�ective of this altered state not the original spin-

conserved state. Many experiments have been performed to test Bell�s inequality

and non-locality [3][4][5]. No matter the distance between the entangled electrons,

they are described by a single wavefunction and a change in that wavefunction

caused by a measurement of the properties of either particle instantaneously a¤ects

the state of the other. This is the essence of entanglement. The wavefunction that

describes the entangled states cannot be separated into the product of the individual

component states. They are linked at the most basic level.

This thesis is concerned with the wavefunction that can be used to describe the

entangled state of the photons emitted via the annihilation of the matter/anti-matter

pair of an electron and a positron. When an electron and a positron are in close

enough proximity they can annihilate each other. This annihilation process converts

the energy associated with the mass and motion of the particles into radiation. There

are two probable pathways for the emittance of this radiation. The �rst pathway

is taken when the positron/electron pair has a total spin one, and sees the energy

released in the form of three photons. The second pathway is taken when the

positron/electron pair has spin zero, and sees the energy released in the form of two

photons. We are interested in the two-photon process.

The two photons created from this annihilation process are described using the

theory of wavefunction collapse. Between them they must conserve the energy

and momentum of the matter/anti-matter pair. The energy conservation property

ensures that both photons are approximately .511MeV in energy. The momentum
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conservation property means that these two photons travel in opposite directions,

and the angular momentum conservation property is what results in the two-photon

process where one is spin up and the other spin down. These three properties taken

together make this positron/electron two-photon system an ideal candidate to study

the nature of their entanglement, and to examine what phenomenon may arise from

this entanglement. The measurement of one of the photon�s momentum results in

the collapse of the wavefunction of the second photon.

This theoretical work examines the entanglement discovered by an American

scientist Victor D. Irby [6]. He performed an experiment that used very fast detec-

tion equipment to detect the two photons to con�rm the hypothesis that these two

photons could be detected simultaneously. The experiment allowed Irby to mea-

sure accurately the time di¤erence between detection events. He observed what

we think is an exponential decay function characterizing the di¤erence in detection

times versus number of counts. This means that although some photon pairs are

detected almost simultaneously, most are separated by a signi�cant time interval.

The number of decay events decreases exponentially with the time interval between

detection of the correlated photons. Irby estimates a characteristic line width of

around 100ps.

This exponential decay in the number of counts with increasing detection time

interval is interesting because current theory predicts that because the source is

so localized (the e¤ective source width used by Irby is safely within 5mm) it was

expected that the arrival time di¤erence should be the time it takes to traverse

the source �t = d=c where d is the thickness of the source. It takes light about

17ps to traverse 5mm. An uncertainty of this magnitude would account for the

annihilation occurring at an extreme end of the source. However, the line width

of the exponential decay at full-width half-maximum is ten times greater than this

source location uncertainty, measured by Irby as about 120ps. Light takes this long
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to traverse 3.6cm.We think that the exponentially decaying nature of the coincidence

time interval is characteristic of the entanglement of the two photons.

For a practical application, time of �ight positron emission technology (TOF

PET) uses the time di¤erence between detection events of photons produced through

two-photon annihilation to localize the source of radiation along the line of response

[7]. The Irby experiment begins with a highly localized source, and so should give

us a good idea about how accurate coincident detection can be for applications such

as TOF PET.

This thesis explains this time di¤erence between detection events using the phe-

nomenon of decoherence. Using the results pertaining to two-photon detection

experiments published in 2010 (see reference [8]) we present a theory linking the

time-dependant decoherence of the particle pair with the time detection di¤erence.

It begins by deriving the atomic �before�and radiative �after�parts using a combi-

nation of solutions to the Dirac equation and theories of spontaneous emission. We

then switch to centre of mass and relative coordinates as in the paper and elucidate

a possible explanation for the non-simultaneous detection phenomenon.



Chapter 2

The Irby Experiment

In 2004 a paper [6] was published in the Journal of Measurement Science and Tech-

nology that presented an experiment which concluded that there exists a funda-

mental uncertainty in the arrival times of two photons which are emitted from the

same annihilation event. The author, V. Irby, was striving to the answer the question

"what is the minimum quantum uncertainty in the time interval between detection of

the two annihilation photons?". The conclusion reached was that the linewidth of the

curve formed by plotting time di¤erence between detection events against number

of counts has a line width which agrees very well with the lifetime of positronium.

The challenge for us is to explain why, and to present a formalism which describes

the event accurately. The experiment of Irby will now be presented.

The heart of the experimental set up is a 3mm wide plastic disc containing 22Na.

This form of radioactive sodium decays via one of two pathways. The �rst pathway,

accounting for 90% of the decay, is �+ decay wherein a photon (later referred to as

the "start" photon), a positron and a neutrino are released. The second pathway

is electron capture, and does not include the release of a positron. Sodium 22 has

a half-life of about 2.6 years [9]. This capsule of sodium serves as our positron

source. It is sandwiched between two aluminum plates of 3mm thickness. At this

thickness it is highly probable that all positrons emitted from 22Na decay will �nd

an electron to annihilate with within this sandwich. In fact, virtually all positrons

are annihilated within one millimeter of aluminum, so we consider our positronium

to be localized within 5mm.

6
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Since the photons emitted via two-photon decay are highly momentum-correlated

and the center of mass momentum of the electron/positron pair (positronium) is

almost zero we expect the sum of momentum of the photons emitted from this

process to be close to zero. This means that the photons �y o¤ at almost exactly

180� in order to conserve the approximately zero momentum of the center of mass.

So the next part of the set-up is the placement of two photon detectors on opposite

sides of the sample. The photon detectors used in this experiment cannot distin-

guish between photon energies, although detection e¢ ciency does vary depending

on photon frequency. This means that coincidence rates of the detectors include

three di¤erent rates. A coincidence count could be a result of a start photon fol-

lowed by one of the singlet decay photons, a start photon followed by a triplet decay

photon, two photons from the three-photon annihilation process or our desired cor-

related annihilation photons. The formula describing the coincident rate for anni-

hilation/annihilation events is calculated by Irby [6] as

RAA =

�
�start�stop


stop
4�

�f1R�

�
(2.1)

where � denotes detection e¢ ciency, 
 is the solid angle of the detector as viewed

by the source, R� is the source activity, � takes into account how many photons

emitted are annihilation photons and f1 is the fraction of annihilation events that

occur through the singlet channel. The subscripts �start�and �stop�label the detec-

tors. The �stop�detector is determined by an electronic delay. The role of these

labels becomes clearer once the experiment has been fully explained. The for-

mula describing the coincidence rate for decay/annihilation events (when the photon

emitted at the beginning of the decay process is recorded within coincidence limit

with an annihilation photon), RDA, is
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RDA = 2

�
�start


start
4�

R�

�
�stop


stop
4�

(�f1 + �f3) (2.2)

where � takes into account how many photons emitted are decay prompt photons

and where f3 is the fraction of annihilation events that occur through the triplet

channel. If we plot these two formulas against each other inserting values re�ective

of Irby�s experimental set-up we see that when the detectors are set 10cm apart

with the source exactly between them, coincidence rates are dominated by annihi-

lation/annihilation events. The placement of the detectors along a line bisecting

the source assures us that the coincidence rates picked up by the detectors is highly

dominated by annihilation/annihilation events (see Figure 2.1).

Now we have established that the experimental set-up �lters out undesired pho-

tons. In order to have con�dence in the results we must establish that errors present

in the experiment are less than the accuracy claimed. The author summarizes all

expected experimental uncertainties as266666664

electronic jitter �tj � 38 ps

electronic walk �tw � 45 ps

transit time spread �ttts � 52 ps

source location �ts � 47 ps

377777775
These errors are added in quadrature.

There is not much to be done about electronic jitter or electronic walk. These

uncertainties are inherent to the instruments used. However, Irby uses an interesting

method to reduce transit time spread while increasing accuracy.

Transit Time Spread and Pulse Height Distribution

Photons are picked up by a multi-channel plate detector (MCPD), which is essen-

tially a plate with many channels running diagonally through it. The channel pores

are 10�m in diameter and are slanted 8� from the vertical. When an incident photon

has be absorbed by the detector it triggers an electron avalanche through the detector
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Figure 2.1: Coincidence rates vs Source position. The short-dashed line represents
coincident detection of a decay photon with either a photon from the three-photon
decay process or the two-photon decay process. The long-dashed line represents
coincident detection of the photons created by the two-photon annihilation process.
The solid line represents total coincindence detections. As the detectors are moved
farther from the source, coincident detection events are dominated by two-photon
annihilation [6].
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creating a pulse which is then picked up by an anode connected to the MCPD. It

follows that photons of lower energy which cannot penetrate through matter create

the largest pulses at the detector because they are absorbed close to the top of plate

and an electron avalanche has the entirety of the plate in which to propagate. On

the other hand, gamma photons released in two photon annihilation events have

very high penetration depths through matter. They are likely to be absorbed close

to the anode creating a pulse of relatively low height. Irby �lters out pulses of high

amplitude while maintaining the lower threshold. This is done by selecting pulses

within the range �V which correspond to the incident radiation being absorbed at

�x according to the relation [6]

j�xj = s�
ln (n�)

ln

�
V +�V

V

�
(2.3)

Since �x tends to zero as �V tends to zero, and since x is directly proportional to

transit time spread, we can reduce �ttts by making �V as small as possible while

keeping it close to the lower detection limit to �lter out other radiation detection

events.

Looking at pulse height distribution qualitatively as in Figure 2.2 we see that for

lower energy electron pulses there is a peak around 17mV . This peak corresponds

to radiation hitting the MCP detector as deep into the channel as possible without

penetrating matter. The Gaussian shape of the peak is explained by the rapid

attenuation of incident low-energy radiation through matter. However the purely

exponential decay of the high-energy -photon pulse amplitude is well supported by

its high penetration through matter. As pulse height increases to above 20meV,

those originating from low-energy sources rapidly go to zero and pulse counts are

dominated by the -photons. Irby also electronically tags all over-range events and

does not use them when calculating coincidences, as these -photons likely originate

as the start photon in positron emission or as triple-decay photons. Irby�s results
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Figure 2.2: Pulse Height Distribution for a MicroChannel-Plate Detector. The solid
line represents the pulse height distribution for mid-energy (1 keV) electrons. The
dashed line represents the pulse height distribution for .511 MeV photons [6].
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Figure 2.3: Final results by Irby (2004). This data is �t with a Lorenztian function,
where a double exponential is required to describe positronium decay.

are plotted as photon counts vs. time interval between detection events in Figure

2.3.

Since the two photons that are detected by Irby are highly correlated, there

exists a single wave function that describes both of them together. As stated in

the Introduction, it was expected that Irby would see simultaneous detection of the

two momentum correlated photons produced in the two-photon positron/electron

annihilation process when the source is midway between the detectors. Since this is

not the case all of the time and the detection time di¤erence at FWHM is very large
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when compared to the time it takes light to traverse a 5mm sample, the correlated

photons cannot generally be described using a delta function. There must be a

wavefunction that can be used to �nd the probability of simultaneous detection.

The rest of this thesis is concentrated on �nding this wavefunction and using it to

derive the probability of simultaneous detection.



Chapter 3

The Dirac Equation

The purpose of using the Dirac Equation is to calculate the probability that a

positron will annihilate with an electron to form two photons, as in Sakurai [10].

Sakurai uses conservation of energy, relativity and creation and destruction operators

in constructing his �eld operator 	. It is Lorentz covariant, conserves momentum

as its basic premise and naturally describes the annihilation and creation of charged

spin-1/2 particles. In the end, Sakurai calculates a lifetime for the positron/electron

bound state. We continue by using his S- and M-matrix elements combined with

the theory of spontaneous emission. But �rst...Dirac!

3.1 Derivation

We begin with a derivation of the Dirac equation. In relativity, conservation of

energy is described by �
E2

c2

�
� p2 = (mc)2 (3.1)

In relativistic quantum mechanics and pair operations p = �i~r becomes

� � (�i~r) where r equals
�
@
@x
; @
@y
; @
@z

�
and � is an operator introduced by Dirac

to factor the p2 term. The operator form of E is E(op) = i~ @
@t
: The equation (3.1)

becomes

�
E(op)

c
� � � p

��
E(op)

c
+ � � p

�
= (mc)2 (3.2)

14
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Making substitutions for E and p and using the parameterization (x1; x2; x3;ct = x�),

equation (3.1) becomes

�
i~

@

@x�
+ � � i~r

��
i~

@

@x�
� ��i~r

�
� = (mc)2�: (3.3)

Manipulation of this equation led Dirac to the famous Dirac Equation

�
�

@

@x�
+
mc

~

�
	 = 0 (3.4)

where � with � = 1; 2; 3; 4 are 4� 4 matrices given by

� =

0@ 0 �i��

i�� 0

1A : (3.5)

The free-particle (A� = (0; 0)) solution of the Dirac equation with p 6= 0 is

 =

0@  A

 B

1A =

0@ uA(p)

uB(p)

1A exp�ip�x
~
� iEt

~

�
(3.6)

The two-by-two matrices �� must satisfy certain mathematical requirements (See

appendix B). The usual choice for this set is the Pauli matrices. 	 is explicitly

de�ned as a Dirac spinor.

	 =

0BBBBBBB@

 1

 2

 3

 4

1CCCCCCCA
(3.7)

Each  i is either positive or negative in energy. Solutions to the Dirac Equation

spinors. We now use the Dirac equation to �nd plane wave solutions for 	: This

set of plane wave-solutions can then be used as components in a Fourier series to

describe an event.
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3.2 Plane Wave Solutions

The plane wave solutions used to construct appropriate Fourier series must be ortho-

normal and comprise a complete set. The solutions derived below satisfy these con-

ditions and will form the basis of the quantized Dirac �eld. This description of

the quantized Dirac �eld will lead us towards a method of describing the physical

event of positron/electron pair annihilation. In order to describe interaction with

photons, we must re-write (� � p) in the Hamiltonian with p �! p � eA�=c where

A� is the time-independent electromagnetic interaction potential. It is then assumed

that 	(x; t) is an eigenfuction of i~ @
@t
with eigenvalue E. In solving the Dirac equa-

tion for this potential, 	i(x; 0) =  ie
(�ip�x=~) are four component spinors with the

 i being the time-independent portion, a four vector. To avoid confusion we point

out that the  i are functions of a four vector in the sense that they are de�ned by

space-time coordinates, and 	(x; t) is a four vector in the sense that it is composed

of 4 vectors. Once the Dirac equation has been evaluated for our potential A� (see

Appendix A), our u(p) functions like in equation (3.6) are as follows:
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u(1)(p)=
p
(jEj+mc2) =2mc2

0BBBBBBB@

1

0

p3c= (E +mc2)

(p1 + ip2) c= (E +mc2)

1CCCCCCCA
(3.8)

u(2)(p)=
p
(jEj+mc2) =2mc2

0BBBBBBB@

0

1

(p1 � ip2) c= (E +mc2)

�p3c= (E +mc2)

1CCCCCCCA

u(3)(p)=
p
(jEj+mc2) =2mc2

0BBBBBBB@

�p3c= (E +mc2)

� (p1 + ip2) c= (E +mc2)

1

0

1CCCCCCCA
(3.9)

u(4)(p)=
p
(jEj+mc2) =2mc2

0BBBBBBB@

� (p1 + ip2) c= (E +mc2)

p3c= (E +mc2)

0

1

1CCCCCCCA
If we note that the time evolution of a positron in the vector potential +eA�=c is

the same as that of an electron in a �eld described by �eA�=c we see that the u(n)(p)

solutions presented above describe, in order, a spin-up electron, a spin-down electron,

a spin-up positron and a spin-down positron. These together form an orthonormal

set for which the law of conservation of charge holds true. These solutions taken

at t = 0 can be expanded in a Fourier series so that one may describe all possible

states for an electron and a positron of a certain spin and momentum. They cannot,

however, describe a system in which positrons and electrons are created and/or

destroyed in �nite number until we replace the Fourier coe¢ cients with creation and
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destruction operators. After adding the operators and completing the solution, we

are left with the operator

	(x; t) =
1p
V

X
p

4X
r=1

s
mc2

jEj b
(r)
p (t)u

(r)(p)eip�x=~ (3.10)

where r denotes collectively the sign of the energy (the sign of the charge on the

particle) and the spin state of that particle. In this way, the four possibilities for

r are a positron spin up or down or an electron spin up or down. It will be noted

that after we took the time dependence out of the free �eld solutions (3.8), the time

dependence of 	(x; t) arises out of the time dependant nature of the creation and

destruction operators by(r)p (t) and b(r)p (t). By the Heisenberg equation of motion

�
b(r)p =

i

~
�
H; b(r)p

�
= � i

~
b(r)p jEj

�
by(r)p =

i

~
�
H; by(r)p

�
= � i

~
b(r)p jEj for r = f1; 2; 3; 4g

we see that

b(r)p (t) = b(r)p (0)e
�ijEjt=~

by(r)p (t) = by(r)p (0)e�ijEjt=~

which enables us to write 	(x; t) as

	(x; t) =
1p
V

X
p

s
mc2

jEj

 X
r=1;2

b(r)p (0)u
(r)(p) exp

�
ip � x
~
� i jEj t

~

�
(3.11)

+
X
r=3;4

by(r)p (0)u(r)(p) exp

�
ip � x
~

+
i jEj t
~

�!
.
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The elements of (3.11) can be interpreted so that the sign of the energy denotes

the species of particle, whether electron or positron. By doing this we further asso-

ciate the �rst and second parts of (3.11) as Hermitian conjugates and make the

following substitutions in the creation and destruction operators

for r = 1; 2 b
(r)
p = b

(s)
p u(r)(p) = u(s)(p)

for r = 3; 4 b
(r)
�p = d

(s)
p u(r)(�p) = v(s)(p)

where d(s)p and dy(s)p satisfy the same anticommutation relations as b(s)p and by(s)p but

are de�ned as for electrons instead of positrons.

Our expressions for 	 and its conjugate 	 are �nally

	(x; t) =
1p
V

X
p

s
mc2

jEj

�
b(s)p u

(s)(p) exp

�
ip � x
~
� i jEj t

~

�
+ dy(s)p v(s)(p) exp

�
�ip � x
~

+
i jEj t
~

��
(3.12)

	(x; t) =
1p
V

X
p

s
mc2

jEj

�
d(s)p v

(s)(p) exp

�
ip � x
~
� i jEj t

~

�
+ by(s)p u(s)(p) exp

�
�ip � x
~

+
i jEj t
~

��
:

(3.13)

The above expression for 	(x; t) is an evolution of the plane wave function char-

acterized by (p; r), and is now a �eld operator, operating in the number space of

electrons and positrons of momentum p and spin s existing at points (x; t). The shift

from the plane wave function to �eld operator is known as the second quantization.

We will break down 	 and 	 into expressions which will prove to be convenient

later. Separating the positive and negative frequency parts of 	 and 	 we can write

them as

 (+) =
1p
V

X
p

X
s=1;2

s
mc2

jEj b
(s)
p u

(s)(p) exp

�
ip � x
~
� i jEj t

~

�
(3.14)
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which annihilates electrons,

 (�) =
1p
V

X
p

X
s=1;2

s
mc2

jEj d
y(s)
p v(s)(p) exp

�
�ip � x
~

+
i jEj t
~

�
(3.15)

which creates positrons

 
(+)
=

1p
V

X
p

X
s=1;2

s
mc2

jEj d
(s)
p v

(s)(p) exp

�
ip � x
~
� i jEj t

~

�
(3.16)

which annihilates positrons and

 
(�)
=

1p
V

X
p

X
s=1;2

s
mc2

jEj b
y(s)
p u(s)(p) exp

�
�ip � x
~

+
i jEj t
~

�
(3.17)

which creates electrons.

3.2.1 Interaction Hamiltonian

Thus far we have been using SI units, but from this point on we will switch to the

natural units where } = c = 1. We assume that our problem is solvable through

perturbation theory, so that the evolution of our state vector � in the interaction

picture is equal to the interaction Hamiltonian acting on that state, i.e.

i
@

@t
� = HI�: (3.18)

We begin �nding a solution by de�ning an operator U(t; t�) such that �(t) =

U(t; t�)�(t� _). It is apparent then that there exists the boundary condition U(t�; t�) =

1. Equation (3.18) can then be written i @
@t
U(t; t�) = HIU(t; t�): If we combine this

di¤erential equation with the boundary condition, we get

U(t; t�) = 1� i
Z t

t�

HIU(t; t�)dt

= 1� i
Z t

t�

HI(t1)dt1 + (�i)2
Z t

t�

dt1

Z t1

t�

HI (t1)HI(t2) dt2 (3.19)

+(�i)n
Z t

t�

dt1

Z t1

t�

dt2:::

Z tn�1

t�

HI (t1)HI(t2):::HI(tn)dtn + :::



21

when solved iteratively. What is exciting about this solution is that each expression

pertains to an outcome of higher order than the last, so that "1" represents no change

in the system (i.e., when the initial state �(t� _) is identical to the �nal state �(t)),

the next expression represents a �rst-order change in the system etc. What is meant

by ��rst order change�cannot be de�ned until both the Hamiltonian and the state

vectors (initial and �nal) are de�ned, which will be done for positron annihilation

shortly. It will be noted, however, that this iterative solution proves to be the key

to describing physical interactions that may result in many di¤erent outcomes. For

example, it is known that positron-electron annihilation may result in the release

of two photons (a second-order solution) or three photons (a third order solution).

There is also more than one possible second or third-order outcome, although the

probabilities of these alternate solutions may be very small. In fact, the most useful

thing about (3.19) is that by bracketing it with the initial and �nal states of interest

and then squaring one obtains the probability of that transition.

Pif = jh�f jU(t; t�) j�iij2 (3.20)

Although U(t; t�) has proven to be a very useful function, it is possible to

encounter di¢ culties with its dependence on the time interval 4t = t � t�. When

this interval is small enough (depending on the process) we might choose t to come

before the process has �nished and not get any useful information. To avoid this

scenario we create a new operator S such that S = U(1;�1) as in (3.21) below.

S(1;�1) = 1� i
Z 1

�1
HI(t1)dt1 +

(�i)2
Z 1

�1
dt1

Z t1

�1
HI (t1)HI(t2) dt2 + (3.21)

(�i)n
Z 1

�1
dt1

Z t1

�1
dt2:::

Z tn�1

�1
HI (t1)HI(t2):::HI(tn)dtn + :::
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Although it is impossible for us to know what has happened and will happen to

particles from the beginning of time to the end of it (if there is such a thing as a

beginning and end of time), our choice of in�nities is intended to represent a time

interval signi�cant enough to encapsulate the relevant process in time so that the

history of the initial state and the fate of the �nal state are irrelevant.

We have been referring to the two-photon annihilation process as second order.

The proof of this lies in the interaction Hamiltonian. The interaction Hamiltonian

density can be derived from the Lagrangian density to be Hint = �ie	�	A� with

A� de�ned as the well-known quantized radiation �eld operator

A�(x; t) =

�
1p
V

�X
k

X
�

c
p
~=2!

h
ak;�(t)�

(�)
� eik�x + ayk;�(t)�

(�)
� e�ik�x

i
(3.22)

in the Coulomb gauge where 1p
V
vanishes under integration, k is the wave number,

and �(�) indicates the polarization. The derivation of this operator can be found in

almost any quantum mechanics textbook [?]. It is worthwhile to note that while x

and t parameterize A, they do not de�ne the operator space. Rather than operating

in space and time, the quantized radiation �eld operator operates in number space

via the creation and annihilation operators ay and a. Thus this operator acts as a

mechanism whereby we can create and/or destroy a photon of energy !, wave vector

k and polarization � at position x and time t.

For later purposes, we will write A�(x; t) as the sum of the positive and negative

frequency parts.
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A�(x; t) = A(+)� + A(�)�

where

A(+)� =

�
1p
V

�X
k

X
�

c
p
~=2!ak;�(t)�(�)� eik�x annihilates a photon

A(�)� =

�
1p
V

�X
k

X
�

c
p
~=2!ayk;�(t)�

(�)
� e�ik�x creates a photon

The interaction Hamiltonian is then

HI = �ie
Z
	�	A�dx

3 (3.23)

Equation (3.23) appears attractively simple, but it is deceivingly complex. Now

that 	, 	, and Au have been de�ned, their product in the interaction Hamiltonian

results in eight possible combinations, and this is only when they appear in the �rst

order expression in (3.21)! To see explicitly what outcomes are possible, we write

down the arguments of the integrations of the �rst order of the Hamiltonian

HI(t1)

= �ie
R
	�	A�dx

3

= �ie
R h�

 
(+)
+  

(�)
�
�

�
 (+) +  (�)

��
A
(+)
� + A

(�)
�

�i
dx3

= �ie
R h�

 
(+)
� 

(+) +  
(+)
� 

(�) +  
(�)
� 

(+) +  
(�)
� 

(�)
��

A
(+)
� + A

(�)
�

�i
dx3

It is clear, after a little bit of trial and error, that for our choice of A� the below

transitions are possible and indeed are the only ones possible. Any other choices for

initial or �nal states will result in either an invalid operation or the creation of the

null vector. The arguments of bras and kets are as follows: e�; e+; photons: For the

sake of clarity, only creation and annihilation operators will be written down, and

other factors omitted.
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Transition bra; operators; ket

 
(+)
� 

(+)A(+) h0; 0; n� 1j dba j1; 1; ni

 
(+)
� 

(+)A(�) h0; 0; n+ 1j dbay j1; 1; ni

 
(+)
� 

(�)A(+) h0; 0; n� 1j ddya j0; 0; ni

 
(+)
� 

(�)A(�) h0; 0; n+ 1j ddyay j0; 0; ni

 
(�)
� 

(+)A(+) h1; 0; n� 1j byba j1; 0; ni

 
(�)
� 

(+)A(�)


1
0
; 0; n+ 1;

�� by0bay j1; 0; ni
 
(�)
� 

(�)A(+) h1; 1; n� 1j bydya j0; 0; ni

 
(�)
� 

(�)A(�) h1; 1; n+ 1j dybay j0; 0; ni
The �rst order equation as written above can, depending on which initial and �nal

states are of interest, give the probabilities for eight possible transitions. It should

be noted that notation for photon occupation number is di¤erent than that for par-

ticles, for there may exist two photons of exactly the same state in a system whereas

two identical electrons (or positrons) are forbidden. This di¤erence has its roots in

the commutation relations that de�ne the relationship between creation and anni-

hilation operators. The commutation relations are as follows, with Or representing

annihilation operators and Oyr representing creation operators in momentum-spin

state r:

n
Or; O

y
r0

o
= �rr0

fOr; Or0g = 0n
Oyr; O

y
r0

o
= 0

For photons the term in brackets is de�ned as fA;Bg = AB�BA (the commutation

relation), and for the particles is fA;Bg = AB+BA (the anti-commutation relation).

These di¤erences re�ect the physical reality of the Fermionic nature of electrons and

positrons, and the Bosonic nature of photons.



25

The second order element (�i)2
R1
�1 dt1

R t1
�1HI (t1)HI(t2) dt2 which we will call

S(2) has sixty-four elements which in di¤erent combination predict speci�c outcomes.

If we substitute (3.23) for HI we get

S(2)

= (�i)2
R1
�1 dt1

R t1
�1HI (t1)HI(t2) dt2

= (�i)2
R
d4x1

R
t2>t1

d4x2Hint (x2)Hint (x1)

= e2
R
d4x1

R
t2>t1

d4x2	(x2) �	(x2)A� (x1)	 (x1) �	(x1)Av (x2)

= e2
R
d4x1

R
t2>t1

d4x2

n
 
(+)
(x2) +  

(�)
(x2)

o
�

n
 (+) (x2) +  (�) (x2)

o
A� (x1)

�
n
 
(+)
(x1) +  

(�)
(x1)

o
�

n
 (+) (x1) +  (�) (x1)

o
Av (x2)

There are sixteen terms in this equation, and therefore sixteen possible transitions

before you take into account the di¤erent variations possible after Au and Av are

expanded (then the possibilities swell to sixty-four), so I will not list them all. But

once again, the probability of transition from one state to another may be found by

bracketing this expression with appropriate initial and �nal states. In our case the

�nal state is h�f j = h1k; 1�kj, the initial j�ii = je+; e_i. Upon inserting these states,

we see that only two of the sixty-four expressions survive. S(2) becomes Sfi, and

the initial and �nal photon states may be separated from the particle states because

their respective operators do not interact. We can also interchange summation

indices (which have been omitted here) in order that the two particle terms may

look as similar as possible, but this must be accompanied by the addition of the

step functions �(tx � ty) and the recognition that our integration parameter now

depends on whether tx follows ty or vice versa. After these changes are made, S(2)

becomes
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Sfi = (�e)2
Z
d4x1

Z
d4x2 h1k; 1�kjA� (x1)Av (x2) j0i

�
�
�
��
(v)� (3.24)

�
h
h0j (+)� (x1) 

(�)
 (x2) 

(+)

� (x1) 
(+)
� (x2)

��e+e���(t1 � t2)
�h0j (+) (x2) 

(�)
� (x1) 

(+)

� (x1) 
(+)
� (x2)

��e+e���(t2 � t1)i :
This expression for Sfi can be further simpli�ed by inserting a complete set

of states jni hnj between the second and third operators in the electron �eld

expressions as follows, where h0j (+)� (x1) 
(�)
 (x2) 

(+)

� (x1) 
(+)
� (x2) je+e�i =

h0j (+)1  
(�)
2 jni hnj 

(+)

1  
(+)
2 je+e�i. We see that only the vacuum term contributes,

leaving us with h0j (+)2  
(�)
1 j0i h0j 

(+)

1  
(+)
2 je+e�i. Similarly, h0j 

(+)

2  
(�)
1  

(+)

1  
(+)
2 je+e�i =

h0j (+)2  
(�)
1 j0i h0j 

(+)

1  
(+)
2 je+e�i. Sfi has now become

Sfi = (�e)2
Z
d4x1

Z
d4x2 h1k; 1�kjA� (x1)Av (x2) j0i uv (3.25)

�
h
h0j (+)1  

(�)
2 j0i h0j 

(+)

1  
(+)
2

��e+e���(t1 � t2)
�h0j (+)2  

(�)
1 j0i h0j 

(+)

1  
(+)
2

��e+e���(t2 � t1)i :
This turns out to be a very interesting and revealing expression. The �rst part

states that two photons will be created, each at two di¤erent places and times x1

and x2 (remembering of course that these are four-vectors), and that the photons

will have wave vectors k and �k. The second part reads that if t1 > t2, an electron

is annihilated and another created at x2 (the earlier time). These events are followed

by the annihilation of both a positron and an electron at x1. The third part reads

exactly the same as the second, but with the exchange of t1 $ t2, and x1 $ x2. The

S-matrix element may be further simpli�ed by substituting the proper expressions

for  
(+)

 (+) into the term that annihilates the positron and original electron After
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substitution of (3.16) and (3.14) into (3.25) we are left with

Sfi = (�e)2
Z
d4x1

Z
d4x2 h1k; 1�kjAu (x1)Av (x2) j0i (u)�� (v)� (3.26)

�
h
h0j (+)� (x1) 

(�)
 (x2) j0i h0j 

(+)

� (x1) 
(+)
� (x2)

��e+e��� (t1 � t2)
�h0j (+) (x2) 

(�)
� (x1) j0i h0j 

(+)

� (x1) 
(+)
� (x2)

��e+e��� (t2 � t1)i :
The expression h0j (+)1  

(+)
2 je+e�i can be expanded to read

�q
m
E+V

�(s+)� (p+) e
ip+�x1

�
�q

m
E�V

u
(s�)
� (p�) e

ip��x2
�
which de�nes the annihilation of an electron at x1 and

a positron at x2. We may also solve for h1k; 1�kjAu (x1)Av (x2) j0i. Since both

Au and A� can create a photon with momenta k1 or k2 at x1 or x2, the term

h1k; 1�kjAu (x1)Av (x2) j0i is de�ned as

Equation (3.26) now looks like

Sfi = (�e)2
Z
d4x1

Z
d4x2

��
1p
2!1V

�(�1)� eik1�x1
��

1p
2!2V

�(�2)� e�ik2�x2
�

(3.27)

+

�
1p
2!2V

�(�2)� eik2�x1
��

1p
2!1V

�(�1)� e�ik1�x2
���r

m

E+V
�(s+)� (p+) e

ip+�x1
�
�

(u)��

24 h0j (+)� (x1) 
(�)
 (x2) j0i� (t1 � t2)�

h0j (+) (x2) 
(�)
� (x1) j0i� (t2 � t1)

35� (3.28)

(v)�

�r
m

E�V
u
(s�)
� (p�) e

ip��x2
�
: (3.29)

The probability of the annihilation of an electron-positron pair via the creation of

two momentum-correlated photons is expressed as the product of the plane wave

solutions for the correlated photons (3.27) with an intermediate time ordered state

(3.28) and the plane wave particle expressions for an electron and a positron (3:29).

The intermediate states sandwiched between the vacuum states in (3:28) are new

and describe what is happening in between x1 and x2. The operator � is one when

its argument is greater than one and zero otherwise. The expression then reads that
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if t1 > t2 a virtual electron propagates from x2 to x1, and if t2 > t1 a virtual positron

propagates from x1 to x2.

We can consider both scenarios (the propagation of a virtual electron from x2

to x1 and the propagation of a virtual positron from x1 to x2) simultaneously using

the time ordering product T
�
 � (x) � (x

0)
�
. In evaluating this product it is shown

that regardless of whether t1 is later or earlier than t2,

h0j (+)� (x1) 
(�)
 (x2) j0i = h0j (+) (x2) 

(�)
� (x1) j0i (3.30)

=
�i
(2�)3

Z
d4p
(�i � p+m)��
p2 +m2 � i� exp [ip � (x� x0)] .

The meaning of this product is that we can consider what is happening between

x1 and x2 as either a virtual electron going forward in time from x2 to x1 or an

electron going backward in time from x1 to x2: Whether the reader chooses to

interpret virtual positrons and electrons or solely one kind of virtual particle going

backwards or forwards in time is a matter of preference. What is important is that

considering both situations together leaves us with (3:30), which is Lorentz invariant

and covariant in (x; x�).

Substituting (3:30) into (3.26) and rearranging we get

Sfi = (�e)2 m

2V 2

s
1

E�E+!1!2

Z
d4x1

Z
d4x2e

�ik1�x1�ik2�x2�(�1)� �(�2)� � (3.31)

e�ip+�x1+ip��x2v�

�
� i

(2�)3

Z
d4q

eiq�(x1�x2) (�i � q +m)

q2 +m2 � ie

�
�u+�

k1  ! k2
�1  ! �2

�
So, for example, Sfi may describe the following scenario: an electron of positive spin

is annihilated at x1 creating a photon and a virtual electron in the same instant.

The photon �ies o¤with momentum k1, the virtual electron propagates to x2 where
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Figure 3.1: A positron (p+) and an electron (p-) moving at low speed are annihilated
at x1 and x2. A virtual particle moves from one annihilation location to the other,
represented by q. Two photons of k1 and k2 �y o¤ along a line.

it is annihilated at t2 along with a positron of negative spin. In that instant, a

photon of momentum �k is created at x2. The ordering of events is easily pictured

using a Feynman diagram 3.1 De�ning a covariant matrix element Mfi (q) as

Mfi (q) = ie2v�(�1)
[�iq +m]

q2 +m2 � i"�
(�2)u+ fq $ �qg: (3.32)

Then the covariant matrix element describes the exchange of a virtual particle from

points q to �q, used as dummy variables for x1 and x2 the space-time coordinates

of the annihilation events.
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Sakurai uses the S-matrix element to obtain the cross-section for pair annihilation

in the center-of-mass coordinate system [10]

� =
�r2�
�+

for �+ << 1

with r� = �=m where � = 1
137

is the �ne structure constant and �+ = jp+j =m.

This is used to calculate the lifetime of positronium (a bound e+e� state) using the

formula

� = (�v+�)
�1 1

2

where � = 1=
�
� (2a�)

3� is the square of the bound-state wave function at the origin,
v+ is the electron/positron velocity (low compared to that of light). Taking the limit

as v+ ! 0 Sakurai calculates

� para�positronium =
2

�5m
' 1:25� 10�10sec. (3.33)



Chapter 4

Changing Bases

Our wavefunction is a linear combination of two states. Sakurai describes them in

terms of the physical objects involved: the �rst state is that of the positron/electron

pair and the second state is the two photons. This description is useful when

describing the various annihilation and creation processes, but in order to describe

the entanglement of the two photons and the results obtained by Irby we will e¤ect

a change of basis. Instead of using the positions of annihilation we switch to center

and relative coordinates.

xc =
1

2
(x1 + x2) ; xr = x1 � x2 (4.1)

Likewise instead of writing momentum separated as that of the electron (p�) and

that of the positron (p+) we describe momentum in terms of center and relative

coordinates. This is very convenient because it allows us to easily describe a net

momentum zero event (one where the positron and electron are moving at low and

opposite velocities �+ = ��, which is an excellent approximation.

pc = p+ + p�; pr =
1

2
(p1 � p2) (4.2)

The third component to be a¤ected by the change is the wave-vector k:

kc = k+ + k�; kr =
1

2
(k1 � k2)

Under these transformations the S-matrix (3.31) element of Sakurai is

31



32

S
(2)
fi = �i

1

(2�)4

s
m

E�V

m

E+V

1

2!1V

1

2!2V
(4.3)

�
Z
d4xc

Z
d4xr

Z
d4qMfi (q)

� exp (ipc � xc + ipr � xr � ikc � xc � ikr � xr + iq � xr)

Sakurai uses an in�nite volume approximation in which integration of (4.3) gives

S
(2)
fi = �

i (2�)4

2mV 2
�4 (kc � pc)Mfi (q)jq=kr�pr (4.4)

Since k1 � x1 + k2 � x2 = kc � xc + kr � xr for the photons and p+ � x1 + p� � x2 =

pc �xc+pr �xr; for the particles, our operators and their Fourier transform properties

remain unchanged. These vector additions may be visualized using Figure 4.1. The

linear superposition of states  (x;t) now looks like

 (x;t) = ckc (t) j1s;kci+ ckr (t) jkc;kri : (4.5)
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Figure 4.1: A visualization of the composition of the center of energy (xc) and relative
(xr) coordinates. The blue box represents the source. The kr, kc, pr, and pc are
constructed similarly.



Chapter 5

Theory of Spontaneous Emission

For a system decaying from one state to another such as ours the state vector is

a combination of the two states. Each state jni is preceded by a time-dependant

coe¢ cient cn (t).

j (t)i = ca (t) jai+ cb (t) jbi (5.1)��� _ (t)E = _ca (t) jai+ _cb (t) jbi (5.2)

Solving the Schrodinger equation of motion

���� � � = � i
~V j (t)i where V is the

interaction potential will yield a pair of coupled di¤erential equations for ca (t) and

cb (t) ; the time dependent coe¢ cients. Adapting the Weisskopf-Wigner theory of

spontaneous emission [11] will allow us to solve for these time-dependent coe¢ cients,

and the coe¢ cient of the state describing the correlated photons will contain the

decay constant describing the double-exponential shape of Irby�s results (2.3).

Theories of spontaneous emission describe what happens when an atom in an

excited state releases energy in the form of radiation and does so without the

prompting of an external �eld. This absence of a prompting �eld means that the

emitted photons are not subject to an harmonic �eld operating to drive the fre-

quency of the atom�s radiance. We use spontaneous emission to describe the decay

of a para-positronium "atom" into two momentum-correlated photons. The methods

used in [12] and [11] use the time-dependant Schrodinger equation to solve for the

coe¢ cients of the components of the wavefunction. We do not, but instead use the
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function U (t; t0) derived by Sakurai to describe the time evolution of the function

 .

At the time of annihilation it is the combination of properties of the particle pair

that is of interest. We describe their pairing (positronium) using a single state vector

 based on the observables momentum and energy as well as position. The photons

produced by para-positronium decay are highly momentum and energy correlated

so we describe them with a single ket.

The time evolution of our wavefunction is

j i = �iU (t; t0) j (t0)i

Our system begins in the state j1s;kci and evolves into jkc;kri, satisfying the initial

and �nal conditions ckc (t�) = 1 and ckr (t >> t�) = 1 and of course jckc (t�)j
2+

jckr (t)j
2 = 1. We use the theory of spontaneous emission to obtain expressions for

the coe¢ cients. With _U (2) = U
(2)
r � (kc � pc), and _U (0) = U

(0)
r � (kc � pc)

j (t)i = �U (t; t0) j (t0)i

j (t+�t)i = �U (t+�t; t0) j (t0)i let t0 = t

j (t+�t)i = �
�
U (0)r (t+�t; t) + U (1)r (t+�; t) + U (2)r (t+�; t)

�
j (t)i�

j (t+�t)i � U (0)r (t+�t; t) j (t)i
�
=�t = �

�
U (1)r (t+�t; t) + U (2)r (t+�; t)

�
=�t j (t)i��� _ (t)E = � h _U (1)r (t; t0) + _U (2)r (t; t0)

i
j (t)i

_ca (t) j1s;kci+�k _cb (t) jkc;kri = �
h
_U (1)r (t; t0) + _U (2)r (t; t0)

i
ca (t) j1s;kci+�kcb (t) jkc;kri

To get the pair of coupled di¤erential equations we multiply the above equation by

bras from the left. Multiplying by h1s;kcj , we get

_ca (t) = �ica (t) h1s;kcj _U (1)r (t; t0) j1s;kci � �kcb (t) h1s;kcj _U (2)r (t; t0) jkc;kri

_ca (t) = �kcb (t) h1s;kcj _U (2)r (t; t0) jkc;kri (5.3)
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Multiplying by hkc;krj, we get the other equation

_cb (t) = �ca (t) hkc;krj _U (2)r (t; t0) j1s;kci (5.4)

The di¤erential equation for the �rst coe¢ cient is

�
ca (t) = �kcb (t) h1s;kcj _U (2)r (t; t�) jkc;kri (5.5)

where hf jU (2) (t; t�) jii = U
(2)
fi .Writing out _U

(2)
fi

�
U
(2)

fi (t0; t) =
@U

(2)
fi (t0; t)

@t
: (5.6)

For times (t� t�) >> (tc � tr) we can replace U (2)fi with S
(2)
fi and get

�
U
(2)

fi (t0; t) =
@S

(2)
fi (t0; t)

@t
: (5.7)

Substituting (4.4) in the above equation

�
U
(2)

fi (t0; t) =
�

�t

"
�i (2�)

4

2mV 2
�4 (kc � pc)Mfi (q)jq=kr�pr

#
(5.8)

we can see that the variable t is buried in the four-component delta function. We

can exchange 2�� (!c � Ec) (the energy part) with T = t� t0 (time derivative unity

because the energy will not change over time) and �3 (kc � pc) (2�)3 =V with �kc;pc ,

appropriate for discrete and well-de�ned momentum, which our photons certainly

have. Our result for (5.8) is then

�
U
(2)

fi (t0; t) = �
i

mV
�kc;pc Mfi (q)jq=kr�pr

Substituting this into (5.4) and (5.5) we get
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ca (t) = C exp [(�iEc � �) (t� t0)] (5.9)

cb (t) = �C
�
U
(2)

fi fexp [(�iEc � �) (t� t0)] (5.10)

� exp [�i!c (t� t0)]g (!c � Ec + i�)�1

The time t� is the time of positron ejection from the radioactive decay. For times

much greater than ��1 the �rst term of (5.10) can be neglected, leaving cb (t) =

� exp [�i!c (t� t0)] (!c � Ec + i�)�1, where S(2) is the S-matrix element describing

two-photon annihilation. Then following the theory of Weisskopf-Wigner [11], with

! = 2 jkrj, and E = 2m (to �rst order in E) we get for the coe¢ cient cb (t) = ckr (t)

ckr (t) = A
exp [�i! (t� t�)]
! � E + i�

(5.11)

Where A is the normalization constant. We evaluate for A as in [8] and get

ckr (t) =

r
8��

V E2
exp [�i! (t� t�)]
! � E + i�

This is the coe¢ cient needed to describe the evolution of the two-photon radiation.

The coe¢ cient ca (t) = ckc (t) is essentially zero after a few decay time constants.



Chapter 6

Discussion

Now that we have found the time dependent coe¢ cient describing the evolution

of the wavefunction of the correlated photons, we will use this coe¢ cient to �nd

an expression describing the time di¤erence in detection of the two photons. The

mixture of states describing the relative dynamics is constructed using ckr (t) and

jkri as

j ri =
r
8��

V E2

X
kr

exp [�i! (t� t�)]
! � E + i�

jkri : (6.1)

Strictly speaking this mixture should be weighted as in the 1s state, but since � >>

a�1� the weights can be neglected, and we can treat (6.1) as a pure state. Now we

have a wave vector in the momentum basis. However the detection device of Irby

measures position and arrival time. In order to describe these, we switch to space

time coordinates to get the space-time wavefunction  (xr; t).

 (xr; t) = hxrj ri

where

j ri =
Z
d3x (xr; t) jxri :

To switch from position to momentum coordinates we use jxri = eikr�xr jkri = (2�)3=2

and then integrate over xr and kr as in [8] to �nd

 (jxrj ; t) =
r
�

4�

1

jxrj
exp

�
� (iE + �)

�
t� t� �

1

2
jxrj
��

(6.2a)
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It is important that we specify that t > t�, and we need to include in this statement

that the times implicit in xr are also greater than t�.

Irby tried to analyze his results in a paper published in 2003 (See Reference

[13]) using the theory presented in the Einstein Podolsky Rosenthal paper of 1935

[1]. This theory relies on wavefunction collapse to describe the entanglement of

two particles. Once the property in which the particles are entangled (in our case,

momentum) has been measured for one particle, the wavefunction of the other par-

ticle collapses into an eigenfunction of the density matrix. Irby�s attempt was unsuc-

cessful largely because the wavefunctions he constructed could not describe the time

di¤erence in detection of the two photons. Because we have switched to center of

energy and relative coordinates, the relative detection time is fairly easy to pull out,

and we shall continue using the wavefunction collapse method. Like EPR and Irby

we write (6.2a) as

 (jxrj ; t) = � (� 1 � t�)� (� 2 � t�)
1Z
0

dx� (jx<j � x) (jx<j+ x; t)

where jxrj = (jx<j � x) and � (jx<j � x) is a position eigenvector with eigenvalue

x. The step functions ensure that the photons are not released before the positron

has been released at time t�. We de�ne � 1 as the emission time of the �rst photon

and � 2 as the emission time of the second photon. The time t< is the time of

the �rst photodetection, t< of the second. We integrate over x, which is still a

four-dimensional space-time vector.

The probability for coincident detection is, within the center of energy and rela-

tive coordinates,

P =
1

V

���� �jxrj ; t1 + t2
2

�����2 (6.3)

Substituting (6.2a) into (6.3) and averaging over positron emission times we get

P =
r

8� jxrj2 V
exp [�� j� 1 � � 2j] : (6.4)
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where r is the relative coordinate and j� 1 � � 2j is time interval separating detection

events. The formula (6.4) gives the probability of coincident detection for the entan-

gled photons released via the two-photon pathway of positron-electron annihilation.

The exponential term is a product of a characteristic decay time � (positronium

lifetime) and the time interval between detection events. Figure (6.1) is the data

collected by Irby (and generously sent to us), �tted to a comparison of curves (6.1).

The curve that best �ts both the peak and the tails is the exponential. Then the

most probable result is P = r
8�jxrj2V

, when � 1 � � 2 = 0, which is the peak, and as

the time di¤erence increases the probability of that result decreases exponentially.

We stated at the beginning of this thesis that our goal was to create an expression

that accounts for the exponentially decaying count rates with respect to the size of

the time di¤erence between detection times. The expression (6.4) does so very neatly.

The physics of it is this: averaging over the positron emission times indicates that

we do not know the instant at which the positron is created. Also it is true that we

do not know the instant of decay; it follows an exponential decay curve. This decay

probability can be summed up as "The electron and positron most likely annihilate

right away (corresponding to the sharp peak in detection of two photons arriving

simultaneously). If the pair do not annihilate instantaneously, they are then most

likely to decay in the next instant (corresponding to the two photons arriving a

short time apart)" and so on such that the probability of the pair still existing

decreases exponentially and the probability of detecting the two photons arriving

a signi�cant time apart has increased. The reason the time di¤erence in photon

detection re�ects the probability curve of the annihilation event is because detection

of the photon position is a consequence of causality and dependent on the occurrence

of the annihilation. This is what we have built into equation (6.4) by using center

of energy and relative coordinates, photon emission times that are dependent on
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Figure 6.1: Irby�s raw data, showing various function �ttings. The double expo-
nential is a better �t to the peak, and the tails follow the Lorentzian �tting. The
standard deviation of the double exponential is aproximately 0.45, with FWHM of
about 103ps.
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positron emission timing and distance traveled to the detector, spontaneous emission

theory and momentum correlation leading to wavefunction collapse.

The time di¤erence between detection of the two simultaneously created photons

is the direct result of the decoherence of the wavepacket describing them. If the

center of energy were not spread out over space, the fact that the photons are

detected 120ps apart would have to mean that one photon was emitted 3cm closer

to its detector than the other photon. However, Irby�s source is so localized (to

within 3-7mm) that the time interval between photon arrival times must be a result

of some physical process that treats the photon wave packet as being spread out

over an area. My theory is that if the energy of the photons is spread out over

an area then it�s arrival at the detector will not register at the instant that the

leading edge of the pulse arrives. The absorption of the photon�s energy does not

necessarily happen at the instant of the wavefront�s arrival, but rather according

to a probability curve described by P (t) = r
8�jxrj2V

exp [�� j� 1 � � 2j]. I would put

forward that the decoherence (the spreading over space) out of the wavefunction

occurs over the time it takes for the matter/antimatter pair to annihilate. Thus

over a series of measurements the detection time di¤erence at FWHM is the lifetime

of the positron/electron pair.

6.1 Application

These results can be immediately applied to existing technologies, most notably

time-of-�ight positron emission tomography (TOF PET). PET is used to image

tumors in a person�s body by having the patient ingest a substance tagged with

a radioactive element that releases positrons in its decay process. The substance,

glucose for example, is taken into the tumor along with the radioactive element and

the tumor becomes the source of gamma ray emissions[15].
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The PET detector is built as a long hollow tube of concentric detector rings

into which the patient is inserted. When two detectors log near-simultaneous events

(within the order of 10ns) the event is attributed to two-photon annihilation and

computer software constructs a line between the two detectors called the line of

response (LOR). Many of these LOR are logged, and wherever they intersect is a

likely source of radiation. Time-of-�ight PET is a re�nement of PET based on the

time interval between detection events. The time interval between detection events

is used to calculate where along the LOR the photons originated[16] (see Figure 6.2).

Irby�s experiment and our research is signi�cant to TOF PET because it shows

that there is a signi�cant uncertainty in the location of the radiative source, or the

tumor. An uncertainty of at least 120ps (or 3.6cm in distance) would be a reasonable

margin of error, although there are still a signi�cant number of photon pairs that

are detected at greater time intervals than this.

6.2 Future Experimentation

The theoretical results obtained in this thesis paper could be corroborated by further

experimentation. In order to test the theory that the detection time interval is a

result of decoherence stemming from the decay process, other experiments must be

devised to rule out other possibilities. For example, Irby�s experiment occurs within

high vacuum and are thus limited to the physical constraints of a high vacuum

apparatus. The detectors are never more than 10cm apart. If, for example, the

decoherence of the photon wavepacket occurs as a consequence of propagation over

distance and not as proposed in this thesis, an experiment where the detectors are a

larger distance apart would yield an exaggerated curve and larger FWHM. It must
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Figure 6.2: A diagram illustrating the detection of one pair of momentum correlated
photons originating from the two-photon positron/electron annihilation process.
Image (a) illustrates that in PET, location information is distributed equally along
the LOR. Image (b) illustrates that in TOF PET, source location information is
localized to a segment of the LOR [16].
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be noted, however, that if this is the case Irby�s results of 120ps (the lifetime of

positronium) would be an enormous coincidence.

Another aspect of the theory that could be tested with a larger experimental

set-up are the e¤ects spatial localization perpendicular to the direction of propaga-

tion. The further apart the detectors are, the lesser the angle their surfaces subtend

from the source, thus increasing our knowledge of their location. According to the

Heisenberg uncertainty principle as it applies to the relationship between location

and momentum �x�p > }=2. Since the photons are so strongly momentum corre-

lated, it would be interesting to see an analysis of the results of Irbys experiment and

identical set-ups at further distances from the viewpoint of the relationship between

highly localized position and correlated momentum.



Chapter 7

Appendices

7.1 A. Plane wave solution

In order to �nd plane wave solutions to the Dirac equation, we must re-write the

Hamiltonian (� � p) as p �! p � eA�
c
where A� is the time-independent electro-

magnetic interaction potential. It is then assumed that 	(x; t) is an eigenfuction of

i~ @
@t
with eigenvalue E. Thus

A(x; t) = (A; iA�) (7.1)

and

	(x; t) = 	(x; 0)e�iEt=~. (7.2)

After making these substitutions in (??), the equation becomes

0@ �i~ @
@x�
+ eA�

c
�� � (i~r+ eA�

c
)

� � (i~r+ eA�
c
) i~ @

@x�
+ eA�

c

1A0@  A

 B

1A = �mc

0@  A

 B

1A (7.3)

This matrix reduces to the following two equations:

(�i~ @

@x�
� eA�

c
) A � � � (i~r�

eA�
c
) B = �mc A (7.4)
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�� � (i~r�eA�
c
) A + (i~

@

@x�
� eA�

c
) B = �mc B (7.5)

Equations (7.4) and (7.5) then simplify to

� � (i~r�eA�
c
) B =

1

c
(�mc2 + E � eA�) A (7.6)

�� � (i~r�eA�
c
) A = �

1

c
(mc2 + E � eA�) B (7.7)

The free-particle (A = (0; 0)) solution of the Dirac equation with p 6= 0 is

 =

0@  A

 B

1A =

0@ uA(p)

uB(p)

1A exp�ip�x
~
� iEt

~

�
(7.8)

Where uA(p) and uB(p) are four component spinors independent of x and t. If we

substitute (7.8) into equations (7.6) and (7.7) we get

� � (i~r)uB(p) exp
�
ip�x
~
� iEt

~

�
=
1

c
(�mc2+E)uA(p) exp

�
ip�x
~
� iEt

~

�
(7.9)

+

uA(p) =
c

E �mc2 (� � p)uB(p) (7.10)

and

� � (i~r)uB(p) exp
�
ip�x
~
� iEt

~

�
=
1

c
(�mc2 + E)uA(p) exp

�
ip�x
~
� iEt

~

�

+
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uB(p) =
c

E +mc2
(� � p)uA(p): (7.11)

After some investigation, we �nd that there exist two appropriate solutions for both

uA(p) and uB(p). Solutions u(1)(p) and u(2)(p) have E =
q
jpj2 c2 +m2c4 > 0, and

are associated withuA(p). Solutions u(3)(p) and u(4)(p) have E =
q
jpj2 c2 +m2c4 <

0, and are associated withuB(p).

7.2 B. Sigma Matrices

There are many possibilities for our choices of ��. In order to satisfy the requirements

in using a Dirac spinor, the gamma matrices need only satisfy the following four

requirements: that they be traceless, of even dimension greater than 2 and have

eigenvalues of �1. By virtue of these characteristics of the ��, the gamma matrices

satisfy the anticommutation relations
�
�; �

	
= 2��;� , and are each Hermitian.

These relationships are important because with them one may derrive the di¤erential

law of current conservation, and show that the Dirac equation is valid independent of

the choice of representation. The choice of the placement and sign of the imaginary

numbers in the � matrices determines the form of the 4-vector spinor. We make the

easy choice for the �� of (3:5) and choose the standard form of the Pauli matrices,

which satisfy the four requirements. This choice of � corresponds to a four-vector

of the form 	 = [	;i	�]:

The 2� 2 matrices ��:

�1 =

0@ 0 1

1 0

1A ; �2 =

0@ 0 �i

i 0

1A ; �3 =

0@ 1 0

0 �1

1A ; �4 =

0@ 1 0

0 1

1A :
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